The asymptotic shape of the branching random walk

Donggeun Ryou

1 Introduction

Notations.

Let's think about branching random walk on \mathbb{R}^n . An initial ancestor starts at the origin.

 $\{Z_{r_1}^{(1)}\} = \{Z_r^{(1)}\}\$: a set of positions of the first generation people. All initial ancestors can make first generation people in positions in $\{Z_r^{(1)}\}\$. Assume that And assume that the expected number of people in the first generation is strictly greater than 1.

 $\{Z_{r_n}^{(n)}\}$: set of positions of the people in *n*-th generation.

 \mathfrak{F}^n : $\sigma-\text{field}$ generated by all the births in the first n generations.

Given \mathfrak{F}^n , the point process formed by the children of an *n*-th generation person at X has the same distributions as the process with points $\{Z_r^{(1)} + X\}$.

Let S be the event that there are people in every generation.

Let $I_{r_n}^{(n)} = \frac{Z_{r_n}^{(n)}}{n}$ and for each $n, \mathscr{P}^{(n)}$ be the set of points $\{I_{r_n}^{(n)}\}$.

 $\mathscr{H}^{(n)}$: the convex hull of $\mathscr{P}^{(n)}$

If $x, y \in \mathbb{R}^n$, $\langle x, y \rangle$ is their inner product and ||x|| is the Euclidean norm of x. The unit sphere is $S^{n-1} = \{X : ||x|| = 1\}$ and the closed ball of radius $r, B_r = \{x : ||x|| \le r\}$. The function $k(\theta)$ on \mathbb{R}^n is defined by

$$k(\theta) = \log E\left[\sum_{r} \exp\langle -\theta, Z_{r}^{(1)} \rangle\right]$$

k(0) is a number of initial ancestoers and assume that k(0) > 0.

Let the measure g be defined by $g(D) = E[\sharp\{r : Z_r^{(1)} \in \mathscr{D}\}]$ where $D \subset \mathbb{R}^n$ then

$$\exp k(\theta) = E\left[\sum_{r} e^{-\langle \theta, Z_r^{(1)} \rangle}\right] = \int \exp\langle -\theta, X \rangle dg(X)$$

This is a Laplace still transform of g.(Note that $\mathscr{L}(f)(s) = \int_0^\infty f(t)e^{-st}dt$). Also $k(\theta)$ is a convex function and let B is a convex set(it is possibly empty.) such that $k(\theta)$ is finite.

We will consider when B is not empty and $0 \in intB$. B is empty when the number of first generation people are infinite and $0 \notin intB$ when there exists $Z_r^{(1)}$ such that its norm is infinite. The function ξ on \mathbb{R}^n is given by

$$\xi(y) = \inf\{k(\theta) + \langle \theta, y \rangle : \theta\}$$

Let $\mathscr{P}(a)$ be

$$\mathscr{P}(a) = \{ y : \xi(y) \ge a \}$$

and let $\mathscr{P}(0) = \mathscr{P}$

2 Multivariate Laplace-Stieltjes transforms

Lemma 2.1. (i) $\mathscr{P}(a)$ is a closed convex set and $\mathscr{P}(a) = \bigcap_{d < a} \mathscr{P}(d)$. (ii) If a < k(0) then $\mathscr{P}(a)$ is non-empty and $int \mathscr{P}(a) \subset \bigcup_{d > a} \mathscr{P}(d)$. (iii) if a < k(0) then $int \mathscr{P}(a)$ is non-empty if and only if int A is non-empty.

Lemma 2.2. If $0 \in intB$ then $\mathscr{P}(a)$ is compact.

3 The shape of $\mathscr{H}^{(n)}$

Theorem 3.1. For any a < 0, $\mathscr{P}^{(n)} \subset \mathscr{P}(a)$ for all but finitely many n on S.

Theorem 3.2.

 $int \mathscr{P} \subset \liminf \mathscr{H}^{(n)} \subset \limsup \mathscr{H}^{(n)} \subset \mathscr{P} \qquad a.s. \text{ on } S$

where $\liminf \mathscr{H}^{(n)} = \bigcup_{m \ge 1} \bigcap_{n > m} \mathscr{H}^{(m)}$ and $\limsup \mathscr{H}^{(n)} = \bigcap_{n \ge 1} \bigcup_{m \ge n} \mathscr{H}^{(m)}$.

Example 3.3. Let's think of branching random walk in \mathbb{R}^1 . It starts with one initial ancestor at the origin and $\{Z_1^{(1)}\} \subset \{-1, 0, 1\}$ with $P(-1 \in \{Z_1^{(1)}\}) = P(1 \in \{Z_1^{(1)}\}) = p$ and $P(0 \in \{Z_1^{(1)}\}) = 1$. Then

$$k(\theta) = \log(e^{-\theta}p + e^{\theta}p + 1)$$

y is the right most point of \mathscr{P} , when y is minimum(or infimum) of $k(\theta)/\theta$ where $\theta < 0$. We can draw a graph of it. When p = 1, y = 1 so that $\mathscr{P} = [-1, 1]$. When p = 0, y = 0 and $\mathscr{P} = \{0\}$.

Proof. (Proof of theorem 3.1) Let's assume B is not empty. For any $h : \mathbb{R}^n \to \mathbb{R}^+$,

$$E\left[\sum_{r} h(Z_r^{(n)}) | \mathfrak{F}^{n-1}\right] = \sum_{r} \int h(Z_r^{(1)} + X) dg(X)$$

In particular

$$E\left[\sum_{r_n} \exp\langle-\theta, Z_{r_n}^{(n)}\rangle |\mathfrak{F}^{n-1}\right] = \sum_{r_{n-1}} \int \exp\langle-\theta, Z_{r_{n-1}}^{(n-1)} + X\rangle dg(X) = \exp k(\theta) \sum_{r_{n-1}} \exp\langle-\theta, Z_{r_{n-1}}^{(n-1)}\rangle dg(X) = \exp k(\theta) \sum_{r_{n-1}} \exp \langle-\theta, Z_{r_{n-1}}^{(n-1)}\rangle dg(X) = \exp k(\theta) \sum_{r_{n-1}} \exp \{-\theta, Z_{r_{n-1}}^{(n-1)}\rangle dg(X) = \exp k(\theta) \sum_{r_{n-1}} \exp \{-\theta, Z_{r_{n-1}}^{(n-1)}\rangle dg(X) = \exp k(\theta) \sum_{r_{n-1}} \exp \{-\theta, Z_{r_{n-1}}^{(n-1)}\rangle dg(X) = \exp k(\theta) \sum_{r_{n-1}} \exp k(\theta) \sum_{r_{n-1}} \exp k(\theta) \sum_{r_{n-1}} \exp k(\theta) \sum_{r_{n-1}} \exp$$

So,

$$E\bigg[\sum_r \exp\langle -\theta, Z_r^n\rangle\bigg] = \exp nk(\theta)$$

Hence, when $\theta \in B$,

$$E\left[\sum_{r_n} \frac{1}{\exp n(k(\theta) + \langle \theta, I_{r_n}^{(n)} \rangle)}\right] = 1 \quad \text{for each } n$$

Let Ω_n be the event that $\mathscr{P}^{(n)} \setminus \mathscr{P}(a)$ is non-empty, where a < 0 is fixed. Take $I_i^{(n)} \in \mathscr{P}^{(n)} \setminus \mathscr{P}(a)$ when Ω_n occurs.

By the definition of $\xi(y)$, if $\xi(y) < \infty$, there exists θ such that $\xi(y) \le k(\theta) + \langle \theta, y \rangle \le \xi(y) + \ln \epsilon$ where $\epsilon > 1$ and $e^a \epsilon < 1$. Since $I_i^{(n)} \notin \mathscr{P}(a)$,

$$\frac{1}{\exp(k(\theta) + \langle \theta, I_i^{(n)} \rangle)} \ge \frac{1}{\epsilon \exp \xi(I_i^{(n)})} \ge \frac{1}{\epsilon e^a}$$

For each $I_i^{(n)}$, choose corresponding θ_i such that $\xi(I_i^{(n)}) \leq k(\theta) + \langle \theta, I_i^{(n)} \rangle \leq \xi(I_i^{(n)}) + \ln \epsilon$. Now we have $I_i^{(n)}$ and θ_j such that $\sharp\{i\} = \sharp\{j\}$ and when i = j, above relation holds.

$$\sharp\{i\} = \sharp\{j\} = \sum_{i} E\left[\sum_{j} \frac{1}{(\exp(k(\theta_{i})) + \langle \theta_{i}, I_{j}^{(n)} \rangle)^{n}}\right]$$
$$\geq E\left[\sum_{i} \frac{1}{(\exp(k(\theta_{i})) + \langle \theta_{i}, I_{i}^{(n)} \rangle)^{n}}\right]$$
$$\geq P(\Omega_{n}) E\left[\sum_{i} \frac{1}{(\exp(k(\theta_{i})) + \langle \theta_{i}, I_{i}^{(n)} \rangle)^{n}}\right|\Omega_{n}$$
$$\geq P(\Omega_{n}) \sum_{i} (\epsilon e^{a})^{-n} \geq P(\Omega_{n}) \sharp\{i\} (\epsilon e^{a})^{-n}$$

Thus, we have

$$P(\Omega_n) \le (\epsilon e^a)^n$$

Theorem 3.4. (Borel Cantelli lemma) If E_1, E_2, \cdots be a sequence of events in some probability space. If the sum of the probabilities of E_n is finite and $\sum_{n=1}^{\infty} P(E_n) < \infty$, then the probability that infinitely many of them occur is 0, i.e. $P(\limsup_{n\to\infty} E_n) = 0$

By Borel Cantelli lemma, $\mathscr{P}^{(n)} \subset \mathscr{P}(a)$ for all but finitely many n on S.

Proof. (Proof of theorem 3.2) By lemma 2.1, $\mathscr{P}(a)$ is a closed convex set. For sufficiently large $n, \mathscr{P}^{(n)} \subset \mathscr{H}^{(n)} \subset \mathscr{P}(a)$ by theorem 3.1. For any a < 0, there exists N_a such that $\cup_{m>N_a} \mathscr{H}^{(m)} \subset \mathscr{P}(a)$. Since $\limsup \mathscr{H}^{(n)} \subset \cup_{m>N} \mathscr{H}^{(m)}$ for any N, $\limsup \mathscr{H}^{(n)} \subset \mathscr{P}(a)$ for any a < 0. By lemma 2.1, $\limsup \mathscr{H}^{(n)} \subset \mathscr{P}$.

Since $\liminf \mathscr{H}^{(n)} \subset \limsup \mathscr{H}^{(n)}$ is trivial, it suffices to show that $int \mathscr{P} \subset \liminf \mathscr{H}^{(n)}$. For this, we have to use 1 dimensional result.

Theorem 3.5. Suppose n = 1, *i.e.* \mathbb{R} . and $k(\theta) < \infty$ for some $\theta > 0$. Let $\log(\mu(a)) = \inf\{\theta a + k(\theta) : \theta \ge 0\}, \gamma = \inf\{a : \mu(a) > 1\}$ and $I_{\min}^{(n)} = \inf\{I_r^{(n)} : r\}$. Then, $I_{\min}^{(n)} \to \gamma$ a.s. on S.

The important obesrvation The projection of the branching random walk on \mathbb{R}^n onto any subspace of \mathbb{R}^n gives another branching random walk.

Let's suppose $0 \in intB$. By lemma 2.2, \mathscr{P} is compact. Since $0 \in intB$, for any $y \in \mathbb{R}^n$, there exists $\theta > 0$ such that $\theta y \in S$ so that $k(\theta y) < \infty$. Let

$$\gamma(y) = \inf\{a : \inf\{k(\theta y) + \theta a : \theta \ge 0\} > 0$$

By theorem 3.5, there exists a sequence $\{I^{(n)}\}$ such that $\langle I^{(n)}, y \rangle \to \gamma(y)$ a.s. on S.

A point *E* in the convex set *D* is called an exposed point if there exists a supporting plane $\{x : \langle x, y \rangle = \kappa\}$ to *D* for which $D \cap \{x : \langle x, y \rangle = \kappa\} = E$.

Suppose that $\{x : \langle x, y \rangle = \kappa\}$ is a supporting plane to \mathscr{P} such that $\mathscr{P} \subset \{x : \langle x, y \rangle \geq \kappa\}$. By lemma 2.1 (i), for any $\epsilon > 0$, $\mathscr{P}(a) \subset \{x : \langle y, x \rangle \geq \kappa - \epsilon\}$ for a < 0 sufficiently small. By theorem 3.1, $I^{(n)} \in \mathscr{P}(a) \subset \{x : \langle y, x \rangle \geq k - \epsilon\}$ for large n and $\langle I^{(n)}, y \rangle \to \gamma(y)$. Therefore, $\gamma(y) \geq \kappa - \epsilon$. Since ϵ is arbitrary $\gamma(y) \geq \kappa$.

Take $x \in int \mathscr{P}$. By lemma 3.(ii) $int \mathscr{P}(0) \subset \bigcup_{d>0} \mathscr{P}(d)$. $x \subset \mathscr{P}(d)$ for some positive d. Therefore, $\xi(x) > 0$. For all real θ , $k(\theta y) + \theta \langle y, x \rangle > 0$. By definition of $\gamma(y)$, $\gamma(y) \leq \langle y, x \rangle$. Since $\{x : \langle x, y \rangle = \kappa\}$ is a supporting plane to \mathscr{P} , we can choose x such that $\gamma(y) \leq \langle y, x \rangle \leq \kappa + \epsilon$. Thus, $\gamma(y) \leq \kappa + \epsilon$ and $\kappa = \gamma(y)$. Any supporting plane to \mathscr{P} has the form $\{z : \langle z, y \rangle = \gamma(y)\}$ for some $y \in S$. For any exposed point E of \mathscr{P} , $\exists y_0 \in B$ such that $\mathscr{P} \cap \{z : \langle z, y_0 \rangle = \gamma(y_0)\} = E$.

Figure 1

Now we take $\{I^{(n)}\}$ satisfying theorem 3.5 with $y = y_0$, then by theorem 3.1, $\{I^{(n)}\} \subset \mathscr{P}^{(n)} \subset \mathscr{P}(a)$ for all but finitely many n and $\mathscr{P}(a)$ is bounded. Thus, $\{I^{(n)}\}$ is bounded. Any accumulation point of it must lie in $\mathscr{P}(a) \subset \mathscr{P}$.

Let z_0 be an accumulation point of the sequence. There is a subsequence of $\{I^{(n)}\}\$ such that $\langle I_k^{(n)}, y_0 \rangle \to \langle z_0, y_0 \rangle = \gamma(y_0)$. Thus, accumulation point lies in \mathscr{P} and $\{z : \langle z, y_0 \rangle = \gamma(y_0)\}$. It means $z_0 = E$ and the whole sequence must converge to E because there is only one accumulation point in a sequence $\{\langle I^{(n)}, y_0 \rangle\}$. Therefore, $\|I^{(n)} - E\| \to 0$ as $n \to \infty$ a.s. on S.

Let E_1, \dots, E_N be exposed points of \mathscr{P} and let $\mathscr{H}(E_1, \dots, E_N)$ be their convex hull. We can choose n_i such that $\left\|E_i - I_i^{(k)}\right\| \leq \epsilon$ when $k \geq n_i$. Thus,

$$int\mathscr{H}(E_1,\cdots,E_N) \subset int\mathscr{H}(I_1^{n_i},\cdots,I_N^{n_N}) + B_{\epsilon} \subset \bigcap_{n \ge \max\{n_1,\cdots,n_N\}} \mathscr{H}^{(n)} + B_{\epsilon}$$
$$\subset \liminf \mathscr{H}^{(n)} + B_{\epsilon}$$

Thus, $int \mathscr{H}(E_1, \cdots, E_N) \subset \liminf \mathscr{H}^{(n)}$ a.s. on S. As N increases, $int \mathscr{H}(E_1, E_2, \cdots, E_N)$ approximates to $int \mathscr{P}$.

 $int\mathscr{P}\subset\liminf\mathscr{H}^{(n)}\qquad\text{a.s. on }S$

References

 J.D.BIGGINS The asymptotic shape of the branching random walk, Adv. Appl prob, (1978), 62-84