The asymptotic shape of the branching random walk

Donggeun Ryou

1 Introduction

Notations.
Let's think about branching random walk on \mathbb{R}^{n}. An initial ancestor starts at the origin. $\left\{Z_{r_{1}}^{(1)}\right\}=\left\{Z_{r}^{(1)}\right\}$: a set of positions of the first generation people. All initial ancestors can make first generation people in positions in $\left\{Z_{r}^{(1)}\right\}$. Assume that And assume that the expected number of people in the first generation is strictly greater than 1.
$\left\{Z_{r_{n}}^{(n)}\right\}$: set of positions of the people in n-th generation.
$\mathfrak{F}^{n}: \sigma$-field generated by all the births in the first n generations.
Given \mathfrak{F}^{n}, the point process formed by the children of an n-th generation person at X has the same distributions as the process with points $\left\{Z_{r}^{(1)}+X\right\}$.

Let S be the event that there are people in every generation.
Let $I_{r_{n}}^{(n)}=\frac{Z_{r_{n}}^{(n)}}{n}$ and for each $n, \mathscr{P}^{(n)}$ be the set of points $\left\{I_{r_{n}}^{(n)}\right\}$.
$\mathscr{H}^{(n)}$: the convex hull of $\mathscr{P}^{(n)}$
If $x, y \in \mathbb{R}^{n},\langle x, y\rangle$ is their inner product and $\|x\|$ is the Euclidean norm of x. The unit sphere is $S^{n-1}=\{X:\|x\|=1\}$ and the closed ball of radius $r, B_{r}=\{x:\|x\| \leq r\}$.

The function $k(\theta)$ on \mathbb{R}^{n} is defined by

$$
k(\theta)=\log E\left[\sum_{r} \exp \left\langle-\theta, Z_{r}^{(1)}\right\rangle\right]
$$

$k(0)$ is a number of initial ancestoers and assume that $k(0)>0$.

Let the measure g be defined by $g(D)=E\left[\sharp\left\{r: Z_{r}^{(1)} \in \mathscr{D}\right\}\right]$ where $D \subset \mathbb{R}^{n}$ then

$$
\exp k(\theta)=E\left[\sum_{r} e^{-\left\langle\theta, Z_{r}^{(1)}\right\rangle}\right]=\int \exp \langle-\theta, X\rangle d g(X)
$$

This is a Laplace stileltjes transform of g.(Note that $\left.\mathscr{L}(f)(s)=\int_{0}^{\infty} f(t) e^{-s t} d t\right)$. Also $k(\theta)$ is a convex function and let B is a convex set(it is possibly empty.) such that $k(\theta)$ is finite.

We will consider when B is not empty and $0 \in \operatorname{int} B . B$ is empty when the number of first generation people are infinite and $0 \notin \operatorname{int} B$ when there exists $Z_{r}^{(1)}$ such that its norm is infinite. The function ξ on \mathbb{R}^{n} is given by

$$
\xi(y)=\inf \{k(\theta)+\langle\theta, y\rangle: \theta\}
$$

Let $\mathscr{P}(a)$ be

$$
\mathscr{P}(a)=\{y: \xi(y) \geq a\}
$$

and let $\mathscr{P}(0)=\mathscr{P}$

2 Multivariate Laplace-Stieltjes transforms

Lemma 2.1. (i) $\mathscr{P}(a)$ is a closed convex set and $\mathscr{P}(a)=\cap_{d<a} \mathscr{P}(d)$.
(ii) If $a<k(0)$ then $\mathscr{P}(a)$ is non-empty and $\operatorname{int} \mathscr{P}(a) \subset \cup_{d>a} \mathscr{P}(d)$.
(iii) if $a<k(0)$ then int $\mathscr{P}(a)$ is non-empty if and only if int A is non-empty.

Lemma 2.2. If $0 \in \operatorname{int} B$ then $\mathscr{P}(a)$ is compact.

3 The shape of $\mathscr{H}^{(n)}$

Theorem 3.1. For any $a<0, \mathscr{P}^{(n)} \subset \mathscr{P}(a)$ for all but finitely many n on S.

Theorem 3.2.

$$
\text { int } \mathscr{P} \subset \lim \inf \mathscr{H}^{(n)} \subset \lim \sup \mathscr{H}^{(n)} \subset \mathscr{P} \quad \text { a.s. on } S
$$

where $\lim \inf \mathscr{H}^{(n)}=\cup_{m \geq 1} \cap_{n>m} \mathscr{H}^{(m)}$ and $\lim \sup \mathscr{H}^{(n)}=\cap_{n \geq 1} \cup_{m \geq n} \mathscr{H}^{(m)}$.
Example 3.3. Let's think of branching random walk in \mathbb{R}^{1}. It starts with one initial ancestor at the origin and $\left\{Z_{1}^{(1)}\right\} \subset\{-1,0,1\}$ with $P\left(-1 \in\left\{Z_{1}^{(1)}\right\}\right)=P\left(1 \in\left\{Z_{1}^{(1)}\right\}\right)=p$ and $P(0 \in$ $\left.\left\{Z_{1}^{(1)}\right\}\right)=1$. Then

$$
k(\theta)=\log \left(e^{-\theta} p+e^{\theta} p+1\right)
$$

y is the right most point of \mathscr{P}, when y is minimum(or infimum) of $k(\theta) / \theta$ where $\theta<0$. We can draw a graph of it. When $p=1, y=1$ so that $\mathscr{P}=[-1,1]$. When $p=0, y=0$ and $\mathscr{P}=\{0\}$.

Proof. (Proof of theorem 3.1) Let's assume B is not empty. For any $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$,

$$
E\left[\sum_{r} h\left(Z_{r}^{(n)}\right) \mid \mathfrak{F}^{n-1}\right]=\sum_{r} \int h\left(Z_{r}^{(1)}+X\right) d g(X)
$$

In particular

$$
E\left[\sum_{r_{n}} \exp \left\langle-\theta, Z_{r_{n}}^{(n)}\right\rangle \mid \mathfrak{F}^{n-1}\right]=\sum_{r_{n-1}} \int \exp \left\langle-\theta, Z_{r_{n-1}}^{(n-1)}+X\right\rangle d g(X)=\exp k(\theta) \sum_{r_{n-1}} \exp \left\langle-\theta, Z_{r_{n-1}}^{(n-1)}\right\rangle
$$

So,

$$
E\left[\sum_{r} \exp \left\langle-\theta, Z_{r}^{n}\right\rangle\right]=\exp n k(\theta)
$$

Hence, when $\theta \in B$,

$$
E\left[\sum_{r_{n}} \frac{1}{\exp n\left(k(\theta)+\left\langle\theta, I_{r_{n}}^{(n)}\right\rangle\right)}\right]=1 \quad \text { for each } n
$$

Let Ω_{n} be the event that $\mathscr{P}^{(n)} \backslash \mathscr{P}(a)$ is non-empty, where $a<0$ is fixed. Take $I_{i}^{(n)} \in \mathscr{P}^{(n)} \backslash \mathscr{P}(a)$ when Ω_{n} occurs.

By the definition of $\xi(y)$, if $\xi(y)<\infty$, there exists θ such that $\xi(y) \leq k(\theta)+\langle\theta, y\rangle \leq \xi(y)+\ln \epsilon$ where $\epsilon>1$ and $e^{a} \epsilon<1$. Since $I_{i}^{(n)} \notin \mathscr{P}(a)$,

$$
\frac{1}{\exp \left(k(\theta)+\left\langle\theta, I_{i}^{(n)}\right\rangle\right)} \geq \frac{1}{\epsilon \exp \xi\left(I_{i}^{(n)}\right)} \geq \frac{1}{\epsilon e^{a}}
$$

For each $I_{i}^{(n)}$, choose corresponding θ_{i} such that $\xi\left(I_{i}^{(n)}\right) \leq k(\theta)+\left\langle\theta, I_{i}^{(n)}\right\rangle \leq \xi\left(I_{i}^{(n)}\right)+\ln \epsilon$. Now we have $I_{i}^{(n)}$ and θ_{j} such that $\sharp\{i\}=\sharp\{j\}$ and when $i=j$, above relation holds.

$$
\begin{aligned}
\sharp\{i\}=\sharp\{j\} & =\sum_{i} E\left[\sum_{j} \frac{1}{\left(\exp \left(k\left(\theta_{i}\right)\right)+\left\langle\theta_{i}, I_{j}^{(n)}\right\rangle\right)^{n}}\right] \\
& \geq E\left[\sum_{i} \frac{1}{\left(\exp \left(k\left(\theta_{i}\right)\right)+\left\langle\theta_{i}, I_{i}^{(n)}\right\rangle\right)^{n}}\right] \\
& \geq P\left(\Omega_{n}\right) E\left[\left.\sum_{i} \frac{1}{\left(\exp \left(k\left(\theta_{i}\right)\right)+\left\langle\theta_{i}, I_{i}^{(n)}\right\rangle\right)^{n}} \right\rvert\, \Omega_{n}\right] \\
& \geq P\left(\Omega_{n}\right) \sum_{i}\left(\epsilon e^{a}\right)^{-n} \geq P\left(\Omega_{n}\right) \sharp\{i\}\left(\epsilon e^{a}\right)^{-n}
\end{aligned}
$$

Thus, we have

$$
P\left(\Omega_{n}\right) \leq\left(\epsilon e^{a}\right)^{n}
$$

Theorem 3.4. (Borel Cantelli lemma) If E_{1}, E_{2}, \cdots be a sequence of events in some probability space. If the sum of the probabilities of E_{n} is finite and $\sum_{n=1}^{\infty} P\left(E_{n}\right)<\infty$, then the probability that infinitely many of them occur is 0, i.e. $P\left(\limsup _{n \rightarrow \infty} E_{n}\right)=0$

By Borel Cantelli lemmma, $\mathscr{P}^{(n)} \subset \mathscr{P}(a)$ for all but finitely many n on S.

Proof. (Proof of theorem 3.2) By lemma 2.1, $\mathscr{P}(a)$ is a closed convex set. For sufficiently large $n, \mathscr{P}^{(n)} \subset \mathscr{H}^{(n)} \subset \mathscr{P}(a)$ by theorem 3.1. For any $a<0$, there exists N_{a} such that $\cup_{m>N_{a}} \mathscr{H}^{(m)} \subset \mathscr{P}(a)$. Since limsup $\mathscr{H}^{(n)} \subset \cup_{m>N} \mathscr{H}^{(m)}$ for any N, limsup $\mathscr{H}^{(n)} \subset \mathscr{P}(a)$ for any $a<0$. By lemma 2.1, limsup $\mathscr{H}^{(n)} \subset \mathscr{P}$.
Since liminf $\mathscr{H}^{(n)} \subset \limsup \mathscr{H}^{(n)}$ is trivial, it suffices to show that $i n t \mathscr{P} \subset \lim \inf \mathscr{H}^{(n)}$. For this, we have to use 1 dimensional result.

Theorem 3.5. Suppose $n=1$, i.e. \mathbb{R}. and $k(\theta)<\infty$ for some $\theta>0$. Let $\log (\mu(a))=$ $\inf \{\theta a+k(\theta): \theta \geq 0\}, \gamma=\inf \{a: \mu(a)>1\}$ and $I_{\min }^{(n)}=\inf \left\{I_{r}^{(n)}: r\right\}$. Then, $I_{\min }^{(n)} \rightarrow \gamma$ a.s. on S.

The important obesrvation The projection of the branching random walk on \mathbb{R}^{n} onto any subspace of \mathbb{R}^{n} gives another branching random walk.

Let's suppose $0 \in \operatorname{int} B$. By lemma $2.2, \mathscr{P}$ is compact. Since $0 \in \operatorname{int} B$, for any $y \in \mathbb{R}^{n}$, there exists $\theta>0$ such that $\theta y \in S$ so that $k(\theta y)<\infty$. Let

$$
\gamma(y)=\inf \{a: \inf \{k(\theta y)+\theta a: \theta \geq 0\}>0
$$

By theorem 3.5, there exists a sequence $\left\{I^{(n)}\right\}$ such that $\left\langle I^{(n)}, y\right\rangle \rightarrow \gamma(y)$ a.s. on S.
A point E in the convex set D is called an exposed point if there exists a supporting plane $\{x:\langle x, y\rangle=\kappa\}$ to D for which $D \cap\{x:\langle x, y\rangle=\kappa\}=E$.

Suppose that $\{x:\langle x, y\rangle=\kappa\}$ is a supporting plane to \mathscr{P} such that $\mathscr{P} \subset\{x:\langle x, y\rangle \geq \kappa\}$. By lemma 2.1 (i), for any $\epsilon>0, \mathscr{P}(a) \subset\{x:\langle y, x\rangle \geq \kappa-\epsilon\}$ for $a<0$ sufficiently small. By theorem 3.1, $I^{(n)} \in \mathscr{P}(a) \subset\{x:\langle y, x\rangle \geq k-\epsilon\}$ for large n and $\left\langle I^{(n)}, y\right\rangle \rightarrow \gamma(y)$. Therefore, $\gamma(y) \geq \kappa-\epsilon$. Since ϵ is arbitrary $\gamma(y) \geq \kappa$.

Take $x \in \operatorname{int} \mathscr{P}$. By lemma 3.(ii) int $\mathscr{P}(0) \subset \cup_{d>0} \mathscr{P}(d) . x \subset \mathscr{P}(d)$ for some positive d. Therefore, $\xi(x)>0$. For all real $\theta, k(\theta y)+\theta\langle y, x\rangle>0$. By definition of $\gamma(y), \gamma(y) \leq\langle y, x\rangle$. Since $\{x:\langle x, y\rangle=\kappa\}$ is a supporting plane to \mathscr{P}, we can choose x such that $\gamma(y) \leq\langle y, x\rangle \leq \kappa+\epsilon$. Thus, $\gamma(y) \leq \kappa+\epsilon$ and $\kappa=\gamma(y)$.

Any supporting plane to \mathscr{P} has the form $\{z:\langle z, y\rangle=\gamma(y)\}$ for some $y \in S$. For any exposed point E of $\mathscr{P}, \exists y_{0} \in B$ such that $\mathscr{P} \cap\left\{z:\left\langle z, y_{0}\right\rangle=\gamma\left(y_{0}\right)\right\}=E$.

Figure 1

Now we take $\left\{I^{(n)}\right\}$ satisfying theorem 3.5 with $y=y_{0}$, then by theorem 3.1, $\left\{I^{(n)}\right\} \subset \mathscr{P}^{(n)} \subset$ $\mathscr{P}(a)$ for all but finitely many n and $\mathscr{P}(a)$ is bounded. Thus, $\left\{I^{(n)}\right\}$ is bounded. Any accumuration point of it must lie in $\mathscr{P}(a) \subset \mathscr{P}$.

Let z_{0} be an accumulation point of the sequence. There is a subsequence of $\left\{I^{(n)}\right\}$ such that $\left\langle I_{k}^{(n)}, y_{0}\right\rangle \rightarrow\left\langle z_{0}, y_{0}\right\rangle=\gamma\left(y_{0}\right)$. Thus, accumulation point lies in \mathscr{P} and $\left\{z:\left\langle z, y_{0}\right\rangle=\gamma\left(y_{0}\right)\right\}$. It means $z_{0}=E$ and the whole sequence must converge to E because there is only one accumulatron point in a sequence $\left\{\left\langle I^{(n)}, y_{0}\right\rangle\right\}$. Therefore, $\left\|I^{(n)}-E\right\| \rightarrow 0$ as $n \rightarrow \infty$ a.s. on S.

Let E_{1}, \cdots, E_{N} be exposed points of \mathscr{P} and let $\mathscr{H}\left(E_{1}, \cdots, E_{N}\right)$ be their convex hull. We can choose n_{i} such that $\left\|E_{i}-I_{i}^{(k)}\right\| \leq \epsilon$ when $k \geq n_{i}$. Thus,

$$
\begin{aligned}
\operatorname{int} \mathscr{H}\left(E_{1}, \cdots, E_{N}\right) & \subset \operatorname{int} \mathscr{H}\left(I_{1}^{n_{i}}, \cdots, I_{N}^{n_{N_{i}}}\right)+B_{\epsilon} \subset \cap_{n \geq \max \left\{n_{1}, \cdots, n_{N}\right\}} \mathscr{H}^{(n)}+B_{\epsilon} \\
& \subset \liminf \mathscr{H}^{(n)}+B_{\epsilon}
\end{aligned}
$$

Thus, int $\mathscr{H}\left(E_{1}, \cdots, E_{N}\right) \subset \liminf \mathscr{H}^{(n)}$ a.s. on S.
As N increases, int $\mathscr{H}\left(E_{1}, E_{2}, \cdots E_{N}\right)$ approximates to int \mathscr{P}.

$$
\operatorname{int} \mathscr{P} \subset \liminf \mathscr{H}^{(n)} \quad \text { a.s. on } S
$$

References

[1] J.D.Biggins The asymptotic shape of the branching random walk, Adv. Appl prob, (1978), 62-84

