
The asymptotic shape of the branching random walk

Donggeun Ryou

1 Introduction

Notations.

Let’s think about branching random walk on Rn. An initial ancestor starts at the origin.

{Z(1)
r1 } = {Z(1)

r } : a set of positions of the first generation people. All initial ancestors can

make first generation people in positions in {Z(1)
r }. Assume that And assume that the expected

number of people in the first generation is strictly greater than 1.

{Z(n)
rn }: set of positions of the people in n-th generation.

Fn : σ−field generated by all the births in the first n generations.

Given Fn, the point process formed by the children of an n-th generation person at X has the

same distributions as the process with points {Z(1)
r +X}.

Let S be the event that there are people in every generation.

Let I
(n)
rn = Z

(n)
rn

n
and for each n, P(n) be the set of points {I(n)rn }.

H (n) : the convex hull of P(n)

If x, y ∈ Rn, 〈x, y〉 is their inner product and ‖x‖ is the Euclidean norm of x. The unit sphere

is Sn−1 = {X : ‖x‖ = 1} and the closed ball of radius r, Br = {x : ‖x‖ ≤ r}.

The function k(θ) on Rn is defined by

k(θ) = logE

[∑
r

exp〈−θ, Z(1)
r 〉
]
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k(0) is a number of initial ancestoers and assume that k(0) > 0.

Let the measure g be defined by g(D) = E[]{r : Z
(1)
r ∈ D}] where D ⊂ Rn then

exp k(θ) = E

[∑
r

e−〈θ,Z
(1)
r 〉
]

=

∫
exp〈−θ,X〉dg(X)

This is a Laplace stileltjes transform of g.(Note that L (f)(s) =
∫∞
0
f(t)e−stdt). Also k(θ) is a

convex function and let B is a convex set(it is possibly empty.) such that k(θ) is finite.

We will consider when B is not empty and 0 ∈ intB. B is empty when the number of first

generation people are infinite and 0 /∈ intB when there exists Z
(1)
r such that its norm is infinite.

The function ξ on Rn is given by

ξ(y) = inf{k(θ) + 〈θ, y〉 : θ}

Let P(a) be

P(a) = {y : ξ(y) ≥ a}

and let P(0) = P

2 Multivariate Laplace-Stieltjes transforms

Lemma 2.1. (i) P(a) is a closed convex set and P(a) = ∩d<aP(d).

(ii) If a < k(0) then P(a) is non-empty and intP(a) ⊂ ∪d>aP(d).

(iii) if a < k(0) then intP(a) is non-empty if and only if intA is non-empty.

Lemma 2.2. If 0 ∈ intB then P(a) is compact.
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3 The shape of H (n)

Theorem 3.1. For any a < 0, P(n) ⊂P(a) for all but finitely many n on S.

Theorem 3.2.

intP ⊂ lim inf H (n) ⊂ lim sup H (n) ⊂P a.s. on S

where lim inf H (n) = ∪m≥1 ∩n>m H (m) and lim sup H (n) = ∩n≥1 ∪m≥n H (m).

Example 3.3. Let’s think of branching random walk in R1. It starts with one initial ancestor

at the origin and {Z(1)
1 } ⊂ {−1, 0, 1} with P (−1 ∈ {Z(1)

1 }) = P (1 ∈ {Z(1)
1 }) = p and P (0 ∈

{Z(1)
1 }) = 1. Then

k(θ) = log(e−θp+ eθp+ 1)

y is the right most point of P, when y is minimum(or infimum) of k(θ)/θ where θ < 0. We can

draw a graph of it. When p = 1, y = 1 so that P = [−1, 1]. When p = 0, y = 0 and P = {0}.

Proof. (Proof of theorem 3.1) Let’s assume B is not empty. For any h : Rn → R+,

E

[∑
r

h(Z(n)
r )|Fn−1

]
=
∑
r

∫
h(Z(1)

r +X)dg(X)

In particular

E

[∑
rn

exp〈−θ, Z(n)
rn 〉|F

n−1
]

=
∑
rn−1

∫
exp〈−θ, Z(n−1)

rn−1
+X〉dg(X) = exp k(θ)

∑
rn−1

exp〈−θ, Z(n−1)
rn−1
〉

So,

E

[∑
r

exp〈−θ, Zn
r 〉
]

= expnk(θ)
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Hence, when θ ∈ B,

E

[∑
rn

1

expn(k(θ) + 〈θ, I(n)rn 〉)

]
= 1 for each n

Let Ωn be the event that P(n)\P(a) is non-empty, where a < 0 is fixed. Take I
(n)
i ∈P(n)\P(a)

when Ωn occurs.

By the definition of ξ(y), if ξ(y) <∞, there exists θ such that ξ(y) ≤ k(θ) + 〈θ, y〉 ≤ ξ(y) + ln ε

where ε > 1 and eaε < 1. Since I
(n)
i /∈P(a),

1

exp(k(θ) + 〈θ, I(n)i 〉)
≥ 1

ε exp ξ(I
(n)
i )
≥ 1

εea

For each I
(n)
i , choose corresponding θi such that ξ(I

(n)
i ) ≤ k(θ) + 〈θ, I(n)i 〉 ≤ ξ(I

(n)
i ) + ln ε. Now

we have I
(n)
i and θj such that ]{i} = ]{j} and when i = j, above relation holds.

]{i} = ]{j} =
∑
i

E

[∑
j

1

(exp(k(θi)) + 〈θi, I(n)j 〉)n

]
≥ E

[∑
i

1

(exp(k(θi)) + 〈θi, I(n)i 〉)n

]
≥ P (Ωn)E

[∑
i

1

(exp(k(θi)) + 〈θi, I(n)i 〉)n

∣∣∣∣Ωn

]
≥ P (Ωn)

∑
i

(εea)−n ≥ P (Ωn)]{i}(εea)−n

Thus, we have

P (Ωn) ≤ (εea)n

Theorem 3.4. (Borel Cantelli lemma) If E1, E2, · · · be a sequence of events in some probability

space. If the sum of the probabilities of En is finite and
∑∞

n=1 P (En) < ∞, then the probability

that infinitely many of them occur is 0, i.e. P (lim supn→∞En) = 0

By Borel Cantelli lemmma, P(n) ⊂P(a) for all but finitely many n on S.
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Proof. (Proof of theorem 3.2) By lemma 2.1, P(a) is a closed convex set. For sufficiently

large n, P(n) ⊂ H (n) ⊂ P(a) by theorem 3.1. For any a < 0, there exists Na such that

∪m>NaH
(m) ⊂ P(a). Since lim sup H (n) ⊂ ∪m>NH (m) for any N , lim sup H (n) ⊂ P(a) for

any a < 0. By lemma 2.1, lim sup H (n) ⊂P.

Since lim inf H (n) ⊂ lim sup H (n) is trivial, it suffices to show that intP ⊂ lim inf H (n). For

this, we have to use 1 dimensional result.

Theorem 3.5. Suppose n = 1, i.e. R. and k(θ) < ∞ for some θ > 0. Let log(µ(a)) =

inf{θa+k(θ) : θ ≥ 0}, γ = inf{a : µ(a) > 1} and I
(n)
min = inf{I(n)r : r}. Then, I

(n)
min → γ a.s. on S.

The important obesrvation The projection of the branching random walk on Rn onto any

subspace of Rn gives another branching random walk.

Let’s suppose 0 ∈ intB. By lemma 2.2, P is compact. Since 0 ∈ intB, for any y ∈ Rn, there

exists θ > 0 such that θy ∈ S so that k(θy) <∞. Let

γ(y) = inf{a : inf{k(θy) + θa : θ ≥ 0} > 0

By theorem 3.5, there exists a sequence {I(n)} such that 〈I(n), y〉 → γ(y) a.s. on S.

A point E in the convex set D is called an exposed point if there exists a supporting plane

{x : 〈x, y〉 = κ} to D for which D ∩ {x : 〈x, y〉 = κ} = E.

Suppose that {x : 〈x, y〉 = κ} is a supporting plane to P such that P ⊂ {x : 〈x, y〉 ≥ κ}. By

lemma 2.1 (i), for any ε > 0, P(a) ⊂ {x : 〈y, x〉 ≥ κ−ε} for a < 0 sufficiently small. By theorem

3.1, I(n) ∈P(a) ⊂ {x : 〈y, x〉 ≥ k− ε} for large n and 〈I(n), y〉 → γ(y). Therefore, γ(y) ≥ κ− ε.

Since ε is arbitrary γ(y) ≥ κ.

Take x ∈ intP. By lemma 3.(ii) intP(0) ⊂ ∪d>0P(d). x ⊂ P(d) for some positive d. There-

fore, ξ(x) > 0. For all real θ, k(θy) + θ〈y, x〉 > 0. By definition of γ(y), γ(y) ≤ 〈y, x〉. Since

{x : 〈x, y〉 = κ} is a supporting plane to P, we can choose x such that γ(y) ≤ 〈y, x〉 ≤ κ + ε.

Thus, γ(y) ≤ κ+ ε and κ = γ(y).
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Any supporting plane to P has the form {z : 〈z, y〉 = γ(y)} for some y ∈ S. For any exposed

point E of P, ∃y0 ∈ B such that P ∩ {z : 〈z, y0〉 = γ(y0)} = E.

Figure 1

Now we take {I(n)} satisfying theorem 3.5 with y = y0, then by theorem 3.1, {I(n)} ⊂ P(n) ⊂

P(a) for all but finitely many n and P(a) is bounded. Thus, {I(n)} is bounded. Any accumu-

lation point of it must lie in P(a) ⊂P.

Let z0 be an accumulation point of the sequence. There is a subsequence of {I(n)} such that

〈I(n)k , y0〉 → 〈z0, y0〉 = γ(y0). Thus, accumulation point lies in P and {z : 〈z, y0〉 = γ(y0)}. It

means z0 = E and the whole sequence must converge to E because there is only one accumula-

tion point in a sequence {〈I(n), y0〉}. Therefore,
∥∥I(n) − E∥∥→ 0 as n→∞ a.s. on S.

Let E1, · · · , EN be exposed points of P and let H (E1, · · · , EN) be their convex hull. We can

choose ni such that
∥∥∥Ei − I(k)i

∥∥∥ ≤ ε when k ≥ ni. Thus,

intH (E1, · · · , EN) ⊂ intH (Ini
1 , · · · , I

nNi
N ) +Bε ⊂ ∩n≥max {n1,··· ,nN}H

(n) +Bε

⊂ lim inf H (n) +Bε

6



Thus, intH (E1, · · · , EN) ⊂ lim inf H (n) a.s. on S.

As N increases, intH (E1, E2, · · ·EN) approximates to intP.

intP ⊂ lim inf H (n) a.s. on S
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